Last mile delivery is the most expensive part of the delivery chain, often representing more than 50% of the overall cost. In recent years, many companies have been innovating to utilize autonomous mobile robots, drones, and autonomous vehicle technology to automate this step. Examples of such products were shown in the image above.
In general, we forecast a 200k unit fleet size until 2035 (accounting for replacement). The inflection point will not occur until around 2025 period given the readiness level of the technology. There is still much work to do to improve the navigation technology. The robots will need to learn to operate in more complex and varied environments with minimal intervention. Furthermore, capital is also essential. The end markets are also highly competitive, imposing tough price constraints.
These sidewalk robots are still far from being totally autonomous. First, they are often deployed in environments such as US university campuses where there is little sidewalk traffic and where the sidewalks are well-structured. Many robots are also restricted to daylight and perception-free conditions. Critically, the suppliers also have remote teleoperator centres. The ratio of operators to robots will need to be kept to an absolute minimum if such businesses are to succeed.
These robots also come with various hardware choices, e.g., number of motor-controlled wheels, payload size and compartment design, battery size, etc. Almost all have HD cameras around the robot to give teleoperators the ability to intervene All also have IMUs and GPS and most have ultrasound sensors for near-field sensing.
The sidewalk robots are often designed to travel slowly at 4-6 km/hr. This is to increase safety, to give robots more thinking time, to give remote teleoperators the chance to intervene, and to enable categorising the robot as a personal device (vs. a vehicle), thus easing the legislative challenges.
A critical choice is whether to use lidar-only, stereo-vision-only, or hybrid. Lidar can give excellent 360deg ranging information with spatial resolution and a dense point cloud which enables good signal processing. Lidars however have are expensive and can have near-field (a few cm) blindspot. The first could jeopardize the business model unless lidar prices- as we have forecasted- fall. The other approach is to go lidar-free, using stereo camera as the main perception-for-navigation sensor. This will require the development of camera-based algorithms for localization, object detection, classification, semantic segmentation, and path planning.